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Note to the user

This software has been written to analyse data of the SPI telescope onboard INTEGRAL. Particular
care has been taken in making the software user friendly and well documented. If you appreciated
this effort, and if this software and User Manual were useful for your scientific work, the author
would appreciate a corresponding acknowledgment in your published work.
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1 Introduction

1.1 Motivation

Again another library for scientific calculus? Yes and no. GammaLib indeed provides a number of function-
nalities that are also found in other libraries, but Gammal.ib goes beyond these libraries in that it provides
tools that are rather specific to the analysis of high-energy astronomy data. The idea was to put everything
together in one single place, limiting thus the dependencies.

It all started when I was preparing the software for the scientific exploitation of the data from the SPI
telescope aboard INTEGRAL. Instead of writing a number of indepedent executables, I decided to write
a set of powerful C++ classes that provide the required functionalities, such as data handling, response
calculation, image convolution, model fitting, etc. Analysis executables were then simple clients of these
C++ classes and basically only provided the user interface. The C++ classes were designed quite general,
so that it was obvious to attempt their utilisation also for the analysis of other data. However, it turned
out that the SPI classes were still too spezialised for this purpose, and a new, more general library was
required to fullfil my goal.

I started the work when I needed sparse matrix capabilities for my SPI model fitting routines. With the
ongoing INTEGRAL mission, the datasets became increasinly larger and the number of fit parameters
required to model these data increased accordingly. The initial GammaLib thus had vector and matrix
classes which it provided to the SPI tools library.

1.2 Using GammaLib

TBD: How to install, how to write code ..

2 GammaLib objects

2.1 Vectors
2.1.1 General

A vector is a one-dimensional array of successive double type values. Vectors are handled in GammaLib by
GVector objects. On construction, the dimension of the vector has to be specified. In other words

GVector vector; // WRONG: constructor needs dimension

is not allowed. The minimum dimension of a vector is 1, i.e. there is no such thing like an empty vector:
GVector vector(0); // WRONG: empty vector not allowed

The correct allocation of a vector is done using

GVector vector(10); // Allocates a vector with 10 elements

On allocation, all elements of a vector are set to 0. Vectors may also be allocated by copying from another
vector

GVector vector(10); // Allocates a vector with 10 elements
GVector another = vector; // Allocates another vector with 10 elements
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or by using

GVector vector = GVector(10);

// Allocates a vector with 10 elements

Vector elements are accessed using the ( ) operator:

GVector vector(10);

for (int i = 0; i < 10; ++i)
vector(i) = (i+1)*10.0;

for (int 1 = 0; 1 < 10; ++i)
cout << vector(i) << endl;

The content of a vector may also be dumped using

cout << vector << endl;

// Allocates a vector with 10 elements

// Set elements 10, 20, ..., 100

// Dump all elements, one by row

// Dump entire vector

which in the above example will put the sequence

10 20 30 40 50 60 70 80 90 100

on the screen.

2.1.2 Vector arithmetics

Vectors can be very much handled like double type variables with the difference that operations are
performed on each element of the vector. The complete list of fundamental vector operators is:
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where a, b and c are of type GVector and s is of type double. Note in particular the combination of
GVector and double type objects in addition, subtraction, multiplication and division. In these cases
the specified operation is applied to each of the vector elements. It is also obvious that only vector of
identicial dimension can occur in vector operations. Dimension errors can be catched by the try - catch

functionality:

try {
GVector a(10);
GVector b(11);
GVector ¢ = a + b;
}
catch (GVector::vector_mismatch &e) {
cout << e.what() << endl;
throw;

}

// WRONG: Vectors have incompatible dimensions

// Dimension exception is catched here
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Further vector operations are

c = a; // Vector assignment

c = s; // Scalar assignment

s = c(index); // Vector element access
c += a; // c =c+ a;

c -= a; // c =c - a;

c += s; // ¢ =c + s;

c -= s8; // ¢ =c¢c - s;

C *= g; // ¢ = c *x s;

c /= s; // ¢ =c/ s;

c = -a; // Vector negation

Finally, the comparison operators

int equal = (a == b); // True if all elements equal
int unequal = (a != b); // True if at least one elements unequal
allow to compare all elements of a vector. If all elements are identical, the == operator returns true,

otherwise false. If at least one element differs, the !'= operator returns true, is all elements are identical it
returns false.

In addition to the operators, the following mathematical functions can be applied to vectors:

acos atan exp sin tanh
acosh atanh fabs sinh

asin cos log sqrt

asinh cosh logl0 tan

Again, these functions should be understood to be applied element wise. They all take a vector as argument
and produce a vector as result. For example

c = sin(a);

attributes the sine of each element of vector a to vector c. Additional implemented functions are

c = cross(a, b); // Vector cross product (for 3d only)
s = norm(a); // Vector norm lal

s = min(a); // Minimum element of vector

s = max(a); // Maximum element of vector

s = sum(a); // Sum of vector elements

Finally, a small number of vector methods have been implemented:

a.size(); // Returns dimension of vector
int n = a.non_zeros(); // Returns number of non-zero elements in vector

int n

2.2 Matrixes
2.2.1 General
A matrix is a two-dimensional array of double type values, arranged in rows and columns. Matrixes are

handled in GammalLib by GMatrix objects and the derived classes GSymMatrix and GSparseMatrix (see
section 2.2.2). On construction, the dimension of the matrix has to be specified:
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GMatrix matrix(10,20); // Allocates 10 rows and 20 columns

Similar to vectors, there is no such thing as a matrix without dimensions in GammaLib.

2.2.2 Matrix storage classes

In the most general case, the rows and columns of a matrix are stored in a continuous array of rows X
columns memory locations. This storage type is referred to as a full matriz, and is implemented by the
class GMatrix. Operations on full matrixes are in general relatively fast, but memory requirements may
be important to hold all the elements. In general matrixes are stored by GammaLib column-wise (or in
column-major format). For example, the matrix

1 2 3 4 5
6 7 8 910
11 12 13 14 15

is stored in memory as

| 1 611 ] 2 712 ] 3 813 | 4 914 | 5 10 15 |
Many physical or mathematical problems treat with a subclass of matrixes that is symmetric, i.e. for which
the element (row,col) is identical to the element (col,row). In this case, the duplicated elements need

not to be stored. The derived class GSymMatrix implements such a storage type. GSymMatrix stores the
lower-left triangle of the matrix in column-major format. For illustration, the matrix

1 2 3 4
2 5 6 7
3 6 8 9
4 7 910

is stored in memory as
| 1 2 3 4| 5 6 71 8 9] 10 |

This divides the storage requirements to hold the matrix elements by almost a factor of two.

Finally, quite often one has to deal with matrixes that contain a large number of zeros. Such matrixes are
called sparse matrizes. If only the non-zero elements of a sparse matrix are stored the memory requirements
are considerably reduced. This goes however at the expense of matrix element access, which has become now
more complex. In particular, filling efficiently a sparse matrix is a non-trivial problem (see section 2.2.7).
Sparse matrix storage is implemented in GammaLib by the derived class GSparseMatrix. A GSparseMatrix
object contains three one-dimensional arrays to store the matrix elements: a double type array that
contains in continuous column-major order all non-zero elements, an int type array that contains for each
non-zero element the row number of its location, and an int type array that contains the storage location
of the first non-zero element for each matrix column. To illustrate this storage format, the matrix

S w N -
o O o1 O
O O O O
0 O O N

is stored in memory as
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| Matrix elements
| Row indices for all elements
| Storage location of first element of each column

O O =

This example is of course not very economic, since the total number of Bytes used to store the matrix is
8 x 8 + (8 +4) x 4 = 112 Bytes, while a full 4 x 4 matrix is stored in (4 x 4) x 8 = 128 Bytes (recall: a
double type values takes 8 Bytes, an int type value takes 4 Bytes). For realistic large systems, however,
the gain in memory space can be dramatical.

The usage of the GMatrix, GSymMatrix and GSparseMatrix classes is analoguous in that they implement
basically all functions and methods in an identical way. So from the semantics the user has not to worry
about the storage class. However, matrix element access speeds are not identical for all storage types,
and if performance is an issue (as it certainly always will be), the user has to consider matrix access more
carefully (see section 2.2.7).

Matrix allocation is performed using the constructors:

GMatrix A(10,20); // Full 10 x 20 matrix

GSymMatrix B(10,10); // Symmetric 10 x 10 matrix
GSparseMatrix C(1000,10000) ; // Sparse 1000 x 10000 matrix
GMatrix A(0,0); // WRONG: empty matrix not allowed
GSymMatrix B(20,22); // WRONG: symmetric matrix requested

In the constructor, the first argument specifies the number of rows, the second the number of columns:
A(row,column). A symmetric matrix needs of course an equal number of rows and columns. And an empty
matrix is not allowed. All matrix elements are initialised to 0 by the matrix allocation.

Matrix elements are accessed by the A(row,col) function, where row and col start from 0 for the first row
or column and run up to the number of rows or columns minus 1:

for (int row = 0; row < n_rows; ++row) {
for (int col = 0; col < n_cols; ++col)
A(row,col) = (row+col)/2.0; // Set value of matrix element

}
double sum2 = 0.0;
for (int row = 0; row < n_rows; ++row) {
for (int col = 0; col < n_cols; ++col)
sum2 *= A(row,col) * A(row,col); // Get value of matrix element

The content of a matrix can be visualised using

cout << A << endl; // Dump matrix

2.2.3 Matrix arithmetics

The following description of matrix arithmetics applies to all storage classes (see section 2.2.2). The
following matrix operators have been implemented in GammaLib:

C=A+ B; // Matrix Matrix addition
C // Matrix Matrix subtraction
C = A * B; // Matrix Matrix multiplication

]
=
|
X



GammalLib User Manual 6

C=A4x%v; // Matrix Vector multiplication
C=A*s; // Matrix Scalar multiplication

C=s % A; // Scalar Matrix multiplication

C=A4A/ s; // Matrix Scalar division

C = -A; // Negation

A += B; // Matrix inplace addition

A -= B; // Matrix inplace subtraction

A x= B; // Matrix inplace multiplications

A x= s; // Matrix inplace scalar multiplication
A /= s; // Matrix inplace scalar division
The comparison operators

int equal = (A == B); // True if all elements equal

int unequal = (A != B); // True if at least one elements unequal

allow to compare all elements of a matrix. If all elements are identical, the == operator returns true,
otherwise false. If at least one element differs, the !'= operator returns true, is all elements are identical it
returns false.

2.2.4 Matrix methods and functions

A number of methods has been implemented to manipulate matrixes. The method
A.clear(); // Set all elements to 0

sets all elements to 0. The methods

int rows = A.rows(); // Returns number of rows in matrix
int cols = A.cols(); // Returns number of columns in matrix

provide access to the matrix dimensions, the methods

double sum = A.sum(); // Sum of all elements in matrix
double min = A.min(); // Returns minimum element of matrix
double max = A.max(); // Returns maximum element of matrix

inform about some matrix properties. The methods

GVector v_row = A.extract_row(row); // Puts row in vector
GVector v_column = A.extract_col(col); // Puts column in vector

extract entire rows and columns from a matrix. Extraction of lower or upper triangle parts of a matrix
into another is performed using

B = A.extract_lower_triangle(); // B holds lower triangle
B = A.extract_upper_triangle(); // B holds upper triangle

B is of the same storage class as A, except for the case that A is a GSymMatrix object. In this case, B will
be a full matrix of type GMatrix.

The methods
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A.insert_col(v_col,col); // Puts vector in column
A.add_col(v_col,col); // Add vector to column

inserts or adds the elements of a vector into a matrix column. Note that no row insertion routines have
been implemented (so far) since they would be less efficient (recall that all matrix types are stored in
column-major format).

Conversion from one storage type to another is performed using

B = A.convert_to_full(); // Converts A -> GMatrix
B = A.convert_to_sym(); // Converts A -> GSymMatrix
B = A.convert_to_sparse(); // Converts A -> GSparseMatrix

Note that convert_to_sym() can only be applied to a matrix that is indeed symmetric.

The transpose of a matrix can be obtained by using one of

A.transpose(); // Transpose method
B = transpose(A); // Transpose function

The absolute value of a matrix is provided by

B = fabs(A); // B = |Al

2.2.5 Matrix factorisations

A general tool of numeric matrix calculs is factorisation.

Solve linear equation Ax = b. Inverse a matrix (by solving successively Ax = e, where e are the unit vectors
for all dimensions).

For symmetric and positive definite matrices the most efficient factorisation is the Cholesky decomposition.
The following code fragment illustrates the usage:

GMatrix A(n_rows, n_cols};
GVector x(n_rows};
GVector b(n_rows};

A.cholesky_decompose(); // Perform Cholesky factorisation
x = A.cholesky_solver(b); // Solve Ax=b for x

Note that once the function A.cholesky_decompose() has been applied, the original matrix content has
been replaced by its Cholesky decomposition. Since the Cholesky decomposition can be performed inplace
(i.e. without the allocation of additional memory to hold the result), the matrix replacement is most
memory economic. In case that the original matrix should be kept, one may either copy it before into
another GMatrix object or use the function

GMatrix L = cholesky_decompose(A);
x = L.cholesky_solver(b);

A symmetric and positif definite matrix can be inverted using the Cholesky decomposition using

A.cholesky_invert(); // Inverse matrix using Cholesky fact.
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Alternatively, the function
GMatrix A_inv = cholesky_invert(4);

may be used.

The Cholesky decomposition, solver and inversion routines may also be applied to matrices that contain
rows or columns that are filled by zeros. In this case the functions provide the option to (logically) compress
the matrices by skipping the zero rows and columns during the calculation.

For compressed matrix Cholesky factorisation, only the non-zero rows and columns have to be symmetric
and positive definite. In particular, the full matrix may even be non-symmetric.

2.2.6 Sparse matrixes

The only exception that does not work is

GSparseMatrix A(10,10);
A(0,0) = A(1,1) = A(2,2) = 1.0; // WRONG: Cannot assign multiple at once

In this case the value 1.0 is only assigned to the last element, i.e. A(2,2), the other elements will remain
0. This feature has to do with the way how the compiler translates the code and how GammalL.ib implements
sparse matrix filling. GSparseMatrix provides a pointer for a new element to be filled. Since there is only
one such fill pointer, only one element can be filled at once in a statement. So it is strongly advised to
avoid multiple matrix element assignment in a single row. Better write the above code like

GSparseMatrix A;

A(0,0) = 1.0;
A(1,1) = 1.0;
A(2,2) = 1.0;

This way, element assignment works fine.

Inverting a sparse matrix produces in general a full matrix, so the inversion function should be used with
caution. Note that a full matrix that is stored in sparse format takes roughly twice the memory than a
normal GMatrix object. If nevertheless the inverse of a sparse matrix should be examined, it is recommended
to perform the analysis column-wise:

GSparseMatrix A(rows,cols); // Allocate sparse matrix
GVector unit (rows) ; // Allocate vector
A .cholesky_decompose(); // Factorise matrix

// Column-wise solving the matrix equation
for (int col = 0; col < cols; ++col) {

unit(col) = 1.0; // Set unit vector
GVector x = cholesky_solver(unit); // Get column x of inverse
unit(col) = 0.0; // Clear unit vector for next round

}

2.2.7 Filling sparse matrixes

The filling of a sparse matrix is a tricky issue since the storage of the elements depends on their distribution
in the matrix. If one would know beforehand this distribution, sparse matrix filling would be easy and fast.
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In general, however, the distribution is not known a priori, and matrix filling may become a quite time
consuming task.

If a matrix has to be filled element by element, the access through the operator
m(row,col) = value;

may be mandatory. In principle, if a new element is inserted into a matrix a new memory cell has to be
allocated for this element, and other elements may be moved. Memory allocation is quite time consuming,
and to reduce the overhead, GSparseMatrix can be configured to allocate memory in bunches. By default,
each time more matrix memory is needed, GSparseMatrix allocates 512 cells at once (or 6144 Bytes since
each element requires a double and a int storage location). If this amount of memory is not adequat one
may change this value by using

m.set_mem_block(size);

where size is the number of matrix elements that should be allocated at once (corresponding to a total
memory of 12 X size Bytes).

Alternatively, a matrix may be filled column-wise using the functions

m.insert_col(vector,col); // Insert a vector in column
m.add_col(vector,col) ; // Add content of a vector to column

While insert_col sets the values of column col (deleting thus any previously existing entries), add_col
adds the content of vector to all elements of column col. Using these functions is considerably more rapid
than filling individual values.

Still, if the matrix is big (i.e. severeal thousands of rows and columns), filling individual columns may still be
slow. To speed-up dynamical matrix filling, an internal fill-stack has been implemented in GSparseMatrix.
Instead of inserting values column-by-column, the columns are stored in a stack and filled into the matrix
once the stack is full. This reduces the number of dynamic memory allocations to let the matrix grow as
it is built. By default, the internal stack is disabled. The stack can be enabled and used as follows:

m.stack_init(size, entries); // Initialise stack
m.add_col(vector,col); // Add columns
m.stack_destroy(); // Flush and destory stack

The method stack_init initialises a stack with a number of size elements and a maximum of entries
columns. The larger the values size and entries are chosen, the more efficient the stack works. The total
amount of memory of the stack can be estimated as 12 X size + 8 X entries Bytes. If a rough estimate of
the total number of non-zero elements is available it is recommended to set size to this value. As a rule
of thumb, size should be at least of the dimension of either the number of rows or the number of columns
of the matrix (take the maximum of both). entries is best set to the number of columns of the matrix.
If memory limits are an issue smaller values may be set, but if the values are too small, the speed increase
may become negligible (or stack-filling may even become slower than normal filling).

Stack-filling only works with the method add_col. Note also that filling sub-sequently the same column
leads to stack flushing. In the code

for (int col = 0; col < 100; ++col) {
column = 0.0; // Reset column
column(col) = col; // Set column
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m.add_col (column,col); // Add column
}

stack flushing occurs in each loop, and consequently, the stack-filling approach will be not very efficient
(it would probably be even slover than normal filling). If successive operations are to be performed on
columns, it is better to perform them before adding. The code

column = 0.0; // Reset column
for (int col = 0; col < 100; ++col)

column(col) = col; // Set column
m.add_col(column,col); // Add column

would be far more efficient.

A avoidable overhead occurs for the case that the column to be added is sparse. The vector may contain
many zeros, and GSparseMatrix has to filter them out. If the sparsity of the column is known, this overhead
can be avoided by directly passing a compressed array to add_col:

int number = 5; // 5 elements in array
double* values = new double[number]; // Allocate values
intx* rows = new int[number]; // Allocate row index
m.stack_init(size, entries); // Initialise stack
for (int 1 = 0; i < number; ++i) { // Initialise array
values[i] = // ... set values
rows[i] = // ... set row indices
}
m.add_col(values,rows,number,col) ; // Add array
m.stack_destroy(); // Flush and destory stack
delete [] values; // Free array

delete [] rows;

The method add_col calls the method stack_push_column for stack filling. add_col is more general than
stack push _column in that it decides which of stack- or direct filling is more adequate. In particular,
stack_push_column may refuse pushing a column onto the stack if there is not enough space. In that case,
stack_push_column returns a non-zero value that corresponds to the number of non-zero elements in the
vector that should be added. However, it is recommended to not use stack_push_column and call instead
add_col.

The method stack destroy is used to flush and destroy the stack. After this call the stack memory is
liberated. If the stack should be flushed without destroying it, the method stack_flush may be used:

m.stack_init(size, entries); // Initialise stack
m.add_col(vector,col); // Add columns
m.stack_flush(); // Simply flush stack

Once flushed, the stack can be filled anew.
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Note that stack flushing is not automatic! This means, if one trys to use a matrix for calculs without
flushing, the calculs may be wrong. If a stack is used for filling, always flush the stack before

using the matrix.
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3.1 GVector

3.2 GMatrix
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