
GammaLib
User ManualVersion 0.1pre2 November 2006J�urgen Kn�odlsederCentre d'Etude Spatiale des Rayonnementsknodlseder�
esr.frhttp://www.
esr.fr./�jurgen/index.html

GammaLib User Manual ii

Note to the userThis software has been written to analyse data of the SPI teles
ope onboard INTEGRAL. Parti
ular
are has been taken in making the software user friendly and well do
umented. If you appre
iatedthis e�ort, and if this software and User Manual were useful for your s
ienti�
 work, the authorwould appre
iate a
orresponding a
knowledgment in your published work.

GammaLib User Manual iiiContents1 Introdu
tion 11.1 Motivation . 11.2 Using GammaLib . 12 GammaLib obje
ts 12.1 Ve
tors . 12.1.1 General . 12.1.2 Ve
tor arithmeti
s . 22.2 Matrixes . 32.2.1 General . 32.2.2 Matrix storage
lasses . 42.2.3 Matrix arithmeti
s . 52.2.4 Matrix methods and fun
tions . 62.2.5 Matrix fa
torisations . 72.2.6 Sparse matrixes . 82.2.7 Filling sparse matrixes . 83 Code referen
e 123.1 GVe
tor . 123.2 GMatrix . 12

GammaLib User Manual 11 Introdu
tion1.1 MotivationAgain another library for s
ienti�

al
ulus? Yes and no. GammaLib indeed provides a number of fun
tion-nalities that are also found in other libraries, but GammaLib goes beyond these libraries in that it providestools that are rather spe
i�
 to the analysis of high-energy astronomy data. The idea was to put everythingtogether in one single pla
e, limiting thus the dependen
ies.It all started when I was preparing the software for the s
ienti�
 exploitation of the data from the SPIteles
ope aboard INTEGRAL. Instead of writing a number of indepedent exe
utables, I de
ided to writea set of powerful C++
lasses that provide the required fun
tionalities, su
h as data handling, response
al
ulation, image
onvolution, model �tting, et
. Analysis exe
utables were then simple
lients of theseC++
lasses and basi
ally only provided the user interfa
e. The C++
lasses were designed quite general,so that it was obvious to attempt their utilisation also for the analysis of other data. However, it turnedout that the SPI
lasses were still too spezialised for this purpose, and a new, more general library wasrequired to full�l my goal.I started the work when I needed sparse matrix
apabilities for my SPI model �tting routines. With theongoing INTEGRAL mission, the datasets be
ame in
reasinly larger and the number of �t parametersrequired to model these data in
reased a

ordingly. The initial GammaLib thus had ve
tor and matrix
lasses whi
h it provided to the SPI tools library.1.2 Using GammaLibTBD: How to install, how to write
ode ..2 GammaLib obje
ts2.1 Ve
tors2.1.1 GeneralA ve
tor is a one-dimensional array of su

essive double type values. Ve
tors are handled in GammaLib byGVe
tor obje
ts. On
onstru
tion, the dimension of the ve
tor has to be spe
i�ed. In other wordsGVe
tor ve
tor; // WRONG:
onstru
tor needs dimensionis not allowed. The minimum dimension of a ve
tor is 1, i.e. there is no su
h thing like an empty ve
tor:GVe
tor ve
tor(0); // WRONG: empty ve
tor not allowedThe
orre
t allo
ation of a ve
tor is done usingGVe
tor ve
tor(10); // Allo
ates a ve
tor with 10 elementsOn allo
ation, all elements of a ve
tor are set to 0. Ve
tors may also be allo
ated by
opying from anotherve
torGVe
tor ve
tor(10); // Allo
ates a ve
tor with 10 elementsGVe
tor another = ve
tor; // Allo
ates another ve
tor with 10 elements

GammaLib User Manual 2or by usingGVe
tor ve
tor = GVe
tor(10); // Allo
ates a ve
tor with 10 elementsVe
tor elements are a

essed using the () operator:GVe
tor ve
tor(10); // Allo
ates a ve
tor with 10 elementsfor (int i = 0; i < 10; ++i)ve
tor(i) = (i+1)*10.0; // Set elements 10, 20, ..., 100for (int i = 0; i < 10; ++i)
out << ve
tor(i) << endl; // Dump all elements, one by rowThe
ontent of a ve
tor may also be dumped using
out << ve
tor << endl; // Dump entire ve
torwhi
h in the above example will put the sequen
e10 20 30 40 50 60 70 80 90 100on the s
reen.2.1.2 Ve
tor arithmeti
sVe
tors
an be very mu
h handled like double type variables with the di�eren
e that operations areperformed on ea
h element of the ve
tor. The
omplete list of fundamental ve
tor operators is:
 = a + b; // Ve
tor + Ve
tor addition
 = a + s; // Ve
tor + S
alar addition
 = s + b; // S
alar + Ve
tor addition
 = a - b; // Ve
tor - Ve
tor subtra
tion
 = a - s; // Ve
tor - S
alar subtra
tion
 = s - b; // S
alar - Ve
tor subtra
tions = a * b; // Ve
tor * Ve
tor multipli
ation (dot produ
t)
 = a * s; // Ve
tor * S
alar multipli
ation
 = s * b; // S
alar * Ve
tor multipli
ation
 = a / s; // Ve
tor * S
alar divisionwhere a, b and
 are of type GVe
tor and s is of type double. Note in parti
ular the
ombination ofGVe
tor and double type obje
ts in addition, subtra
tion, multipli
ation and division. In these
asesthe spe
i�ed operation is applied to ea
h of the ve
tor elements. It is also obvious that only ve
tor ofidenti
ial dimension
an o

ur in ve
tor operations. Dimension errors
an be
at
hed by the try -
at
hfun
tionality:try {GVe
tor a(10);GVe
tor b(11);GVe
tor
 = a + b; // WRONG: Ve
tors have in
ompatible dimensions}
at
h (GVe
tor::ve
tor_mismat
h &e) {
out << e.what() << endl; // Dimension ex
eption is
at
hed herethrow;}

GammaLib User Manual 3Further ve
tor operations are
 = a; // Ve
tor assignment
 = s; // S
alar assignments =
(index); // Ve
tor element a

ess
 += a; //
 =
 + a;
 -= a; //
 =
 - a;
 += s; //
 =
 + s;
 -= s; //
 =
 - s;
 *= s; //
 =
 * s;
 /= s; //
 =
 / s;
 = -a; // Ve
tor negationFinally, the
omparison operatorsint equal = (a == b); // True if all elements equalint unequal = (a != b); // True if at least one elements unequalallow to
ompare all elements of a ve
tor. If all elements are identi
al, the == operator returns true,otherwise false. If at least one element di�ers, the != operator returns true, is all elements are identi
al itreturns false.In addition to the operators, the following mathemati
al fun
tions
an be applied to ve
tors:a
os atan exp sin tanha
osh atanh fabs sinhasin
os log sqrtasinh
osh log10 tanAgain, these fun
tions should be understood to be applied element wise. They all take a ve
tor as argumentand produ
e a ve
tor as result. For example
 = sin(a);attributes the sine of ea
h element of ve
tor a to ve
tor
. Additional implemented fun
tions are
 =
ross(a, b); // Ve
tor
ross produ
t (for 3d only)s = norm(a); // Ve
tor norm |a|s = min(a); // Minimum element of ve
tors = max(a); // Maximum element of ve
tors = sum(a); // Sum of ve
tor elementsFinally, a small number of ve
tor methods have been implemented:int n = a.size(); // Returns dimension of ve
torint n = a.non_zeros(); // Returns number of non-zero elements in ve
tor2.2 Matrixes2.2.1 GeneralA matrix is a two-dimensional array of double type values, arranged in rows and
olumns. Matrixes arehandled in GammaLib by GMatrix obje
ts and the derived
lasses GSymMatrix and GSparseMatrix (seese
tion 2.2.2). On
onstru
tion, the dimension of the matrix has to be spe
i�ed:

GammaLib User Manual 4GMatrix matrix(10,20); // Allo
ates 10 rows and 20
olumnsSimilar to ve
tors, there is no su
h thing as a matrix without dimensions in GammaLib.2.2.2 Matrix storage
lassesIn the most general
ase, the rows and
olumns of a matrix are stored in a
ontinuous array of rows �
olumns memory lo
ations. This storage type is referred to as a full matrix, and is implemented by the
lass GMatrix. Operations on full matrixes are in general relatively fast, but memory requirements maybe important to hold all the elements. In general matrixes are stored by GammaLib
olumn-wise (or in
olumn-major format). For example, the matrix1 2 3 4 56 7 8 9 1011 12 13 14 15is stored in memory as| 1 6 11 | 2 7 12 | 3 8 13 | 4 9 14 | 5 10 15 |Many physi
al or mathemati
al problems treat with a sub
lass of matrixes that is symmetri
, i.e. for whi
hthe element (row,
ol) is identi
al to the element (
ol,row). In this
ase, the dupli
ated elements neednot to be stored. The derived
lass GSymMatrix implements su
h a storage type. GSymMatrix stores thelower-left triangle of the matrix in
olumn-major format. For illustration, the matrix1 2 3 42 5 6 73 6 8 94 7 9 10is stored in memory as| 1 2 3 4 | 5 6 7 | 8 9 | 10 |This divides the storage requirements to hold the matrix elements by almost a fa
tor of two.Finally, quite often one has to deal with matrixes that
ontain a large number of zeros. Su
h matrixes are
alled sparse matrixes. If only the non-zero elements of a sparse matrix are stored the memory requirementsare
onsiderably redu
ed. This goes however at the expense of matrix element a

ess, whi
h has be
ome nowmore
omplex. In parti
ular, �lling eÆ
iently a sparse matrix is a non-trivial problem (see se
tion 2.2.7).Sparse matrix storage is implemented in GammaLib by the derived
lass GSparseMatrix. A GSparseMatrixobje
t
ontains three one-dimensional arrays to store the matrix elements: a double type array that
ontains in
ontinuous
olumn-major order all non-zero elements, an int type array that
ontains for ea
hnon-zero element the row number of its lo
ation, and an int type array that
ontains the storage lo
ationof the �rst non-zero element for ea
h matrix
olumn. To illustrate this storage format, the matrix1 0 0 72 5 0 03 0 6 04 0 0 8is stored in memory as

GammaLib User Manual 5| 1 2 3 4 | 5 | 6 | 7 8 | Matrix elements| 0 1 2 3 | 1 | 2 | 0 3 | Row indi
es for all elements| 0 | 4 | 5 | 6 | Storage lo
ation of first element of ea
h
olumnThis example is of
ourse not very e
onomi
, sin
e the total number of Bytes used to store the matrix is8 � 8 + (8 + 4) � 4 = 112 Bytes, while a full 4 � 4 matrix is stored in (4 � 4) � 8 = 128 Bytes (re
all: adouble type values takes 8 Bytes, an int type value takes 4 Bytes). For realisti
 large systems, however,the gain in memory spa
e
an be dramati
al.The usage of the GMatrix, GSymMatrix and GSparseMatrix
lasses is analoguous in that they implementbasi
ally all fun
tions and methods in an identi
al way. So from the semanti
s the user has not to worryabout the storage
lass. However, matrix element a

ess speeds are not identi
al for all storage types,and if performan
e is an issue (as it
ertainly always will be), the user has to
onsider matrix a

ess more
arefully (see se
tion 2.2.7).Matrix allo
ation is performed using the
onstru
tors:GMatrix A(10,20); // Full 10 x 20 matrixGSymMatrix B(10,10); // Symmetri
 10 x 10 matrixGSparseMatrix C(1000,10000); // Sparse 1000 x 10000 matrixGMatrix A(0,0); // WRONG: empty matrix not allowedGSymMatrix B(20,22); // WRONG: symmetri
 matrix requestedIn the
onstru
tor, the �rst argument spe
i�es the number of rows, the se
ond the number of
olumns:A(row,
olumn). A symmetri
 matrix needs of
ourse an equal number of rows and
olumns. And an emptymatrix is not allowed. All matrix elements are initialised to 0 by the matrix allo
ation.Matrix elements are a

essed by the A(row,
ol) fun
tion, where row and
ol start from 0 for the �rst rowor
olumn and run up to the number of rows or
olumns minus 1:for (int row = 0; row < n_rows; ++row) {for (int
ol = 0;
ol < n_
ols; ++
ol)A(row,
ol) = (row+
ol)/2.0; // Set value of matrix element}...double sum2 = 0.0;for (int row = 0; row < n_rows; ++row) {for (int
ol = 0;
ol < n_
ols; ++
ol)sum2 *= A(row,
ol) * A(row,
ol); // Get value of matrix element}The
ontent of a matrix
an be visualised using
out << A << endl; // Dump matrix2.2.3 Matrix arithmeti
sThe following des
ription of matrix arithmeti
s applies to all storage
lasses (see se
tion 2.2.2). Thefollowing matrix operators have been implemented in GammaLib:C = A + B; // Matrix Matrix additionC = A - B; // Matrix Matrix subtra
tionC = A * B; // Matrix Matrix multipli
ation

GammaLib User Manual 6C = A * v; // Matrix Ve
tor multipli
ationC = A * s; // Matrix S
alar multipli
ationC = s * A; // S
alar Matrix multipli
ationC = A / s; // Matrix S
alar divisionC = -A; // NegationA += B; // Matrix inpla
e additionA -= B; // Matrix inpla
e subtra
tionA *= B; // Matrix inpla
e multipli
ationsA *= s; // Matrix inpla
e s
alar multipli
ationA /= s; // Matrix inpla
e s
alar divisionThe
omparison operatorsint equal = (A == B); // True if all elements equalint unequal = (A != B); // True if at least one elements unequalallow to
ompare all elements of a matrix. If all elements are identi
al, the == operator returns true,otherwise false. If at least one element di�ers, the != operator returns true, is all elements are identi
al itreturns false.2.2.4 Matrix methods and fun
tionsA number of methods has been implemented to manipulate matrixes. The methodA.
lear(); // Set all elements to 0sets all elements to 0. The methodsint rows = A.rows(); // Returns number of rows in matrixint
ols = A.
ols(); // Returns number of
olumns in matrixprovide a

ess to the matrix dimensions, the methodsdouble sum = A.sum(); // Sum of all elements in matrixdouble min = A.min(); // Returns minimum element of matrixdouble max = A.max(); // Returns maximum element of matrixinform about some matrix properties. The methodsGVe
tor v_row = A.extra
t_row(row); // Puts row in ve
torGVe
tor v_
olumn = A.extra
t_
ol(
ol); // Puts
olumn in ve
torextra
t entire rows and
olumns from a matrix. Extra
tion of lower or upper triangle parts of a matrixinto another is performed usingB = A.extra
t_lower_triangle(); // B holds lower triangleB = A.extra
t_upper_triangle(); // B holds upper triangleB is of the same storage
lass as A, ex
ept for the
ase that A is a GSymMatrix obje
t. In this
ase, B willbe a full matrix of type GMatrix.The methods

GammaLib User Manual 7A.insert_
ol(v_
ol,
ol); // Puts ve
tor in
olumnA.add_
ol(v_
ol,
ol); // Add ve
tor to
olumninserts or adds the elements of a ve
tor into a matrix
olumn. Note that no row insertion routines havebeen implemented (so far) sin
e they would be less eÆ
ient (re
all that all matrix types are stored in
olumn-major format).Conversion from one storage type to another is performed usingB = A.
onvert_to_full(); // Converts A -> GMatrixB = A.
onvert_to_sym(); // Converts A -> GSymMatrixB = A.
onvert_to_sparse(); // Converts A -> GSparseMatrixNote that
onvert to sym()
an only be applied to a matrix that is indeed symmetri
.The transpose of a matrix
an be obtained by using one ofA.transpose(); // Transpose methodB = transpose(A); // Transpose fun
tionThe absolute value of a matrix is provided byB = fabs(A); // B = |A|2.2.5 Matrix fa
torisationsA general tool of numeri
 matrix
al
uls is fa
torisation.Solve linear equation Ax = b. Inverse a matrix (by solving su

essively Ax = e, where e are the unit ve
torsfor all dimensions).For symmetri
 and positive de�nite matri
es the most eÆ
ient fa
torisation is the Cholesky de
omposition.The following
ode fragment illustrates the usage:GMatrix A(n_rows, n_
ols};GVe
tor x(n_rows};GVe
tor b(n_rows};...A.
holesky_de
ompose(); // Perform Cholesky fa
torisationx = A.
holesky_solver(b); // Solve Ax=b for xNote that on
e the fun
tion A.
holesky de
ompose() has been applied, the original matrix
ontent hasbeen repla
ed by its Cholesky de
omposition. Sin
e the Cholesky de
omposition
an be performed inpla
e(i.e. without the allo
ation of additional memory to hold the result), the matrix repla
ement is mostmemory e
onomi
. In
ase that the original matrix should be kept, one may either
opy it before intoanother GMatrix obje
t or use the fun
tionGMatrix L =
holesky_de
ompose(A);x = L.
holesky_solver(b);A symmetri
 and positif de�nite matrix
an be inverted using the Cholesky de
omposition usingA.
holesky_invert(); // Inverse matrix using Cholesky fa
t.

GammaLib User Manual 8Alternatively, the fun
tionGMatrix A_inv =
holesky_invert(A);may be used.The Cholesky de
omposition, solver and inversion routines may also be applied to matri
es that
ontainrows or
olumns that are �lled by zeros. In this
ase the fun
tions provide the option to (logi
ally)
ompressthe matri
es by skipping the zero rows and
olumns during the
al
ulation.For
ompressed matrix Cholesky fa
torisation, only the non-zero rows and
olumns have to be symmetri
and positive de�nite. In parti
ular, the full matrix may even be non-symmetri
.2.2.6 Sparse matrixesThe only ex
eption that does not work isGSparseMatrix A(10,10);A(0,0) = A(1,1) = A(2,2) = 1.0; // WRONG: Cannot assign multiple at on
eIn this
ase the value 1.0 is only assigned to the last element, i.e. A(2,2), the other elements will remain0. This feature has to do with the way how the
ompiler translates the
ode and how GammaLib implementssparse matrix �lling. GSparseMatrix provides a pointer for a new element to be �lled. Sin
e there is onlyone su
h �ll pointer, only one element
an be �lled at on
e in a statement. So it is strongly advised toavoid multiple matrix element assignment in a single row. Better write the above
ode likeGSparseMatrix A;A(0,0) = 1.0;A(1,1) = 1.0;A(2,2) = 1.0;This way, element assignment works �ne.Inverting a sparse matrix produ
es in general a full matrix, so the inversion fun
tion should be used with
aution. Note that a full matrix that is stored in sparse format takes roughly twi
e the memory than anormal GMatrix obje
t. If nevertheless the inverse of a sparse matrix should be examined, it is re
ommendedto perform the analysis
olumn-wise:GSparseMatrix A(rows,
ols); // Allo
ate sparse matrixGVe
tor unit(rows); // Allo
ate ve
tor...A.
holesky_de
ompose(); // Fa
torise matrix// Column-wise solving the matrix equationfor (int
ol = 0;
ol <
ols; ++
ol) {unit(
ol) = 1.0; // Set unit ve
torGVe
tor x =
holesky_solver(unit); // Get
olumn x of inverse...unit(
ol) = 0.0; // Clear unit ve
tor for next round}2.2.7 Filling sparse matrixesThe �lling of a sparse matrix is a tri
ky issue sin
e the storage of the elements depends on their distributionin the matrix. If one would know beforehand this distribution, sparse matrix �lling would be easy and fast.

GammaLib User Manual 9In general, however, the distribution is not known a priori, and matrix �lling may be
ome a quite time
onsuming task.If a matrix has to be �lled element by element, the a

ess through the operatorm(row,
ol) = value;may be mandatory. In prin
iple, if a new element is inserted into a matrix a new memory
ell has to beallo
ated for this element, and other elements may be moved. Memory allo
ation is quite time
onsuming,and to redu
e the overhead, GSparseMatrix
an be
on�gured to allo
ate memory in bun
hes. By default,ea
h time more matrix memory is needed, GSparseMatrix allo
ates 512
ells at on
e (or 6144 Bytes sin
eea
h element requires a double and a int storage lo
ation). If this amount of memory is not adequat onemay
hange this value by usingm.set_mem_blo
k(size);where size is the number of matrix elements that should be allo
ated at on
e (
orresponding to a totalmemory of 12� size Bytes).Alternatively, a matrix may be �lled
olumn-wise using the fun
tionsm.insert_
ol(ve
tor,
ol); // Insert a ve
tor in
olumnm.add_
ol(ve
tor,
ol); // Add
ontent of a ve
tor to
olumnWhile insert
ol sets the values of
olumn
ol (deleting thus any previously existing entries), add
oladds the
ontent of ve
tor to all elements of
olumn
ol. Using these fun
tions is
onsiderably more rapidthan �lling individual values.Still, if the matrix is big (i.e. severeal thousands of rows and
olumns), �lling individual
olumns may still beslow. To speed-up dynami
al matrix �lling, an internal �ll-sta
k has been implemented in GSparseMatrix.Instead of inserting values
olumn-by-
olumn, the
olumns are stored in a sta
k and �lled into the matrixon
e the sta
k is full. This redu
es the number of dynami
 memory allo
ations to let the matrix grow asit is built. By default, the internal sta
k is disabled. The sta
k
an be enabled and used as follows:m.sta
k_init(size, entries); // Initialise sta
k...m.add_
ol(ve
tor,
ol); // Add
olumns...m.sta
k_destroy(); // Flush and destory sta
kThe method sta
k init initialises a sta
k with a number of size elements and a maximum of entries
olumns. The larger the values size and entries are
hosen, the more eÆ
ient the sta
k works. The totalamount of memory of the sta
k
an be estimated as 12� size+8� entries Bytes. If a rough estimate ofthe total number of non-zero elements is available it is re
ommended to set size to this value. As a ruleof thumb, size should be at least of the dimension of either the number of rows or the number of
olumnsof the matrix (take the maximum of both). entries is best set to the number of
olumns of the matrix.If memory limits are an issue smaller values may be set, but if the values are too small, the speed in
reasemay be
ome negligible (or sta
k-�lling may even be
ome slower than normal �lling).Sta
k-�lling only works with the method add
ol. Note also that �lling sub-sequently the same
olumnleads to sta
k
ushing. In the
odefor (int
ol = 0;
ol < 100; ++
ol) {
olumn = 0.0; // Reset
olumn
olumn(
ol) =
ol; // Set
olumn

GammaLib User Manual 10m.add_
ol(
olumn,
ol); // Add
olumn}sta
k
ushing o

urs in ea
h loop, and
onsequently, the sta
k-�lling approa
h will be not very eÆ
ient(it would probably be even slover than normal �lling). If su

essive operations are to be performed on
olumns, it is better to perform them before adding. The
ode
olumn = 0.0; // Reset
olumnfor (int
ol = 0;
ol < 100; ++
ol)
olumn(
ol) =
ol; // Set
olumnm.add_
ol(
olumn,
ol); // Add
olumnwould be far more eÆ
ient.A avoidable overhead o

urs for the
ase that the
olumn to be added is sparse. The ve
tor may
ontainmany zeros, and GSparseMatrix has to �lter them out. If the sparsity of the
olumn is known, this overhead
an be avoided by dire
tly passing a
ompressed array to add
ol:int number = 5; // 5 elements in arraydouble* values = new double[number℄; // Allo
ate valuesint* rows = new int[number℄; // Allo
ate row index...m.sta
k_init(size, entries); // Initialise sta
k...for (int i = 0; i < number; ++i) { // Initialise arrayvalues[i℄ = ... // ... set valuesrows[i℄ = ... // ... set row indi
es}...m.add_
ol(values,rows,number,
ol); // Add array...m.sta
k_destroy(); // Flush and destory sta
k...delete [℄ values; // Free arraydelete [℄ rows;The method add
ol
alls the method sta
k push
olumn for sta
k �lling. add
ol is more general thansta
k push
olumn in that it de
ides whi
h of sta
k- or dire
t �lling is more adequate. In parti
ular,sta
k push
olumn may refuse pushing a
olumn onto the sta
k if there is not enough spa
e. In that
ase,sta
k push
olumn returns a non-zero value that
orresponds to the number of non-zero elements in theve
tor that should be added. However, it is re
ommended to not use sta
k push
olumn and
all insteadadd
ol.The method sta
k destroy is used to
ush and destroy the sta
k. After this
all the sta
k memory isliberated. If the sta
k should be
ushed without destroying it, the method sta
k flush may be used:m.sta
k_init(size, entries); // Initialise sta
k...m.add_
ol(ve
tor,
ol); // Add
olumns...m.sta
k_flush(); // Simply flush sta
kOn
e
ushed, the sta
k
an be �lled anew.

GammaLib User Manual 11Note that sta
k
ushing is not automati
! This means, if one trys to use a matrix for
al
uls without
ushing, the
al
uls may be wrong. If a sta
k is used for �lling, always
ush the sta
k beforeusing the matrix.

GammaLib User Manual 123 Code referen
e3.1 GVe
tor3.2 GMatrix

