obsutils.py 33.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
# ==========================================================================
# Utility functions for observation handling
#
# Copyright (C) 2011-2020 Juergen Knoedlseder
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ==========================================================================
import math
import gammalib
import ctools
import cscripts


# ===================== #
# Simulate observations #
# ===================== #
def sim(obs, log=False, debug=False, chatter=2, edisp=False, seed=0,
        emin=None, emax=None, nbins=0, onsrc=None, onrad=0.2, addbounds=False,
        binsz=0.05, npix=200, proj='TAN', coord='GAL', nthreads=0):
    """
    Simulate events for all observations in the container

    Simulate events for all observations using ctobssim. If the number of
    energy bins is positive, the events are binned into a counts cube using
    ctbin. If multiple observations are simulated, the counts cube is a
    stacked cube and the corresponding response cubes are computed using
    ctexpcube, ctpsfcube, ctbkgcube and optionally ctedispcube. The response
    cubes are attached to the first observation in the container, which
    normally is the observation with the counts cube.

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container without events
    log : bool, optional
        Create log file(s)
    debug : bool, optional
        Create console dump?
    chatter : int, optional
        Chatter level
    edisp : bool, optional
        Apply energy dispersion?
    seed : int, optional
        Seed value for simulations
    emin : float, optional
        Minimum energy of counts cube for binned (TeV)
    emax : float, optional
        Maximum energy of counts cube for binned (TeV)
    nbins : int, optional
        Number of energy bins (0=unbinned)
    onsrc : str, optional
        Name of source for On region (None if no On/Off obs. is used)
    onrad : float, optional
        Radius for On region (deg)
    addbounds : bool, optional
        Add boundaries at observation energies
    binsz : float, optional
        Pixel size for binned simulation (deg/pixel)
    npix : int, optional
        Number of pixels in X and Y for binned simulation
    proj : str, optional
        Projection for binned simulation
    coord : str, optional
        Coordinate system for binned simulation
    nthreads : str, optional
        Number of parallel processes for On/Off spectra computation (0=all available CPUs)

    Returns
    -------
    obs : `~gammalib.GObservations`
        Observation container filled with simulated events
    """
    # Allocate ctobssim application and set parameters
    obssim = ctools.ctobssim(obs)
    obssim['seed']     = seed
    obssim['edisp']    = edisp
    obssim['nthreads'] = nthreads
    obssim['chatter']  = chatter
    obssim['debug']    = debug

    # Optionally open the log file
    if log:
        obssim.logFileOpen()

    # Run ctobssim application. This will loop over all observations in the
    # container and simulation the events for each observation. Note that
    # events are not added together, they still apply to each observation
    # separately.
    obssim.run()

    # Binned option?
    if nbins > 0:

        # If energy boundaries are not given then determine the minimum and
        # the maximum energies from all observations and use these values
        # as energy boundaries. The energy boundaries are given in TeV.
        if emin == None or emax == None:
            emin = 1.0e30
            emax = 0.0
            for run in obssim.obs():
                emin = min(run.events().ebounds().emin().TeV(), emin)
                emax = max(run.events().ebounds().emax().TeV(), emax)

        # If a On source is specified then create On/Off observations
        if onsrc != None:

            # Extract source position from model
            model = obssim.obs().models()[onsrc]
            ra    = model['RA'].value()
            dec   = model['DEC'].value()

            # Allocate csphagen application and set parameters
            phagen = cscripts.csphagen(obssim.obs())
            phagen['inmodel']     = 'NONE'
            phagen['srcname']     = onsrc
            phagen['ebinalg']     = 'LOG'
            phagen['emin']        = emin
            phagen['emax']        = emax
            phagen['enumbins']    = nbins
            phagen['srcshape']    = 'CIRCLE'
            phagen['coordsys']    = 'CEL'
            phagen['ra']          = ra
            phagen['dec']         = dec
            phagen['rad']         = onrad
            phagen['stack']       = False
            phagen['inexclusion'] = 'NONE'
            phagen['bkgmethod']   = 'REFLECTED'
            phagen['nthreads']    = nthreads

            # Optionally open the log file
            if log:
                phagen.logFileOpen()

            # Run csphagen application
            phagen.run()

            # Make a deep copy of the observation that will be returned
            # (the csphagen object will go out of scope one the function is
            # left)
            obs = phagen.obs().copy()

        # ... otherwise use binned observations
        else:

            # Allocate ctbin application and set parameters
            binning = ctools.ctbin(obssim.obs())
            binning['ebinalg']  = 'LOG'
            binning['emin']     = emin
            binning['emax']     = emax
            binning['enumbins'] = nbins
            binning['usepnt']   = True # Use pointing for map centre
            binning['nxpix']    = npix
            binning['nypix']    = npix
            binning['binsz']    = binsz
            binning['coordsys'] = coord
            binning['proj']     = proj
            binning['nthreads'] = nthreads
            binning['chatter']  = chatter
            binning['debug']    = debug

            # Optionally open the log file
            if log:
                binning.logFileOpen()

            # Run ctbin application. This will loop over all observations in
            # the container and bin the events in counts maps
            binning.run()

            # If we have multiple input observations then create stacked response
            # cubes and append them to the observation
            if len(obssim.obs()) > 1:

                # Get counts cube. The counts cube is needed to obtained a
                # proper background cube.
                cntcube = binning.cube()

                # Get stacked response
                response = get_stacked_response(obssim.obs(), cntcube,
                                                edisp=edisp,
                                                addbounds=addbounds,
                                                log=log, debug=debug,
                                                chatter=chatter)

                # Set stacked response
                if edisp:
                    binning.obs()[0].response(response['expcube'],
                                              response['psfcube'],
                                              response['edispcube'],
                                              response['bkgcube'])
                else:
                    binning.obs()[0].response(response['expcube'],
                                              response['psfcube'],
                                              response['bkgcube'])

                # Set new models
                binning.obs().models(response['models'])

            # Make a deep copy of the observation that will be returned
            # (the ctbin object will go out of scope one the function is
            # left)
            obs = binning.obs().copy()

    else:

        # Make a deep copy of the observation that will be returned
        # (the ctobssim object will go out of scope one the function is
        # left)
        obs = obssim.obs().copy()

    # Delete the simulation
    del obssim

    # Return observation container
    return obs


# ======================= #
# Set one CTA observation #
# ======================= #
def set_obs(pntdir, tstart=0.0, duration=1800.0, deadc=0.98, \
            emin=0.1, emax=100.0, rad=5.0, \
            instrument='CTA', irf='South_50h', caldb='prod2', \
            obsid='000000', mjdref=51544.5):
    """
    Set a single CTA observation

    The function sets a single CTA observation containing an empty CTA
    event list. By looping over this function CTA observations can be
    added to the observation container.

    Parameters
    ----------
    pntdir : `~gammalib.GSkyDir`
        Pointing direction
    tstart : float, optional
        Start time (s)
    duration : float, optional
        Duration of observation (s)
    deadc : float, optional
        Deadtime correction factor
    emin : float, optional
        Minimum event energy (TeV)
    emax : float, optional
        Maximum event energy (TeV)
    rad : float, optional
        ROI radius used for analysis (deg)
    instrument : str, optional
        Name of Cherenkov Telescope
    irf : str, optional
        Instrument response function
    caldb : str, optional
        Calibration database path
    obsid : str, optional
        Observation identifier

    Returns
    -------
    obs : `~gammalib.GCTAObservation`
        CTA observation
    """
    # Allocate CTA observation
    obs = gammalib.GCTAObservation()

    # Set mission
    mission = gammalib.toupper(instrument)
    obs.instrument(mission)

    # Set CTA calibration database
    db = gammalib.GCaldb()
    if (gammalib.dir_exists(caldb)):
        db.rootdir(caldb)
    else:
        db.open(mission, caldb)

    # Set pointing direction for CTA observation
    pnt = gammalib.GCTAPointing()
    pnt.dir(pntdir)
    obs.pointing(pnt)

    # Set ROI
    roi     = gammalib.GCTARoi()
    instdir = gammalib.GCTAInstDir()
    instdir.dir(pntdir)
    roi.centre(instdir)
    roi.radius(rad)

    # Set GTI
    ref = gammalib.GTimeReference(mjdref,'s','TT','LOCAL')
    gti = gammalib.GGti(ref)
    gti.append(gammalib.GTime(tstart, ref),
               gammalib.GTime(tstart+duration, ref))

    # Set energy boundaries
    ebounds = gammalib.GEbounds(gammalib.GEnergy(emin, 'TeV'),
                                gammalib.GEnergy(emax, 'TeV'))

    # Allocate event list
    events = gammalib.GCTAEventList()

    # Set ROI, GTI and energy boundaries for event list
    events.roi(roi)
    events.gti(gti)
    events.ebounds(ebounds)

    # Set the event list as the events for CTA observation
    obs.events(events)

    # Set instrument response for CTA observation
    obs.response(irf, db)

    # Set ontime, livetime, and deadtime correction factor for CTA observation
    obs.ontime(duration)
    obs.livetime(duration*deadc)
    obs.deadc(deadc)
    obs.id(obsid)

    # Return CTA observation
    return obs


# ============================ #
# Set list of CTA observations #
# ============================ #
def set_obs_list(obsdeflist, tstart=0.0, duration=1800.0, deadc=0.98, \
                 emin=0.1, emax=100.0, rad=5.0, \
                 irf='South_50h', caldb='prod2'):
    """
    Returns an observation container filled with a list of CTA observations

    The list is defined by the obsdeflist parameter which is a dictionnary
    containing the mandatory keywords 'ra' and 'dec' that specify the
    pointing direction for a given observation. Optional keyword give control
    over other observation proposerties, such as duration, deadtime correction,
    energy range, etc. If an optional keyword is not specified, the function
    keyword is used instead.

    Parameters
    ----------
    obsdeflist : list of dict
        Observation definition list
    tstart : float, optional
        Start time (s)
    duration : float, optional
        Duration of observation (s)
    deadc : float, optional
        Deadtime correction factor
    emin : float, optional
        Minimum event energy (TeV)
    emax : float, optional
        Maximum event energy (TeV)
    rad : float, optional
        ROI radius used for analysis (deg)
    irf : str, optional
        Instrument response function
    caldb : str, optional
        Calibration database path

    Returns
    -------
    obs : `~gammalib.GObservations`
        Observation container filled with CTA observation
    """
    # Initialise empty observation container
    obs = gammalib.GObservations()

    # Initialise first time and identifier
    obs_start = tstart
    obs_id    = 1

    # Loop over observation definition list
    for obsdef in obsdeflist:

        # Set pointing direction
        pntdir = gammalib.GSkyDir()
        pntdir.radec_deg(obsdef['ra'], obsdef['dec'])

        # Generate identifier string
        obsid = '%6.6d' % obs_id

        # Set one CTA observation
        obs_cta = set_obs(pntdir,
                          tstart=obs_start,
                          duration=obsdef.setdefault('duration', duration),
                          deadc=obsdef.setdefault('deadc', deadc),
                          emin=obsdef.setdefault('emin', emin),
                          emax=obsdef.setdefault('emax', emax),
                          rad=obsdef.setdefault('rad', rad),
                          irf=obsdef.setdefault('irf', irf),
                          caldb=obsdef.setdefault('caldb', caldb),
                          obsid=obsid)

        # Append to container
        obs.append(obs_cta)

        # Update start time and identifier
        obs_start += duration
        obs_id    += 1

    # Return observation container
    return obs


# ============================ #
# Set CTA observation patterns #
# ============================ #
def set_obs_patterns(pattern, ra=83.6331, dec=22.0145, offset=1.5):
    """
    Sets a number of standard patterns

    Parameters
    ----------
    pattern : str
        Observation pattern ("single", "four")
    ra : float, optional
        Right Ascension of pattern centre (deg)
    dec : float, optional
        Declination of pattern centre (deg)
    offset : float, optional
        Offset from pattern centre (deg)

    Returns
    -------
    obsdeflist : list
        Observation definition list
    """
    # Initialise observation definition list
    obsdeflist = []

    # If the pattern is a single observation then append the Right Ascension
    # and Declination to the observation definition list
    if pattern == 'single':
        obsdef = {'ra': ra, 'dec': dec}
        obsdeflist.append(obsdef)

    # ... otherwise, if the pattern is four observations then append four
    # observations offset by a certain amount from the pattern centre to the
    # observation definition list
    elif pattern == 'four':

        # Set pattern centre
        centre = gammalib.GSkyDir()
        centre.radec_deg(ra, dec)

        # Append pointings
        for phi in [0.0, 90.0, 180.0, 270.0]:
            pntdir = centre.copy()
            pntdir.rotate_deg(phi, offset)
            obsdeflist.append({'ra': pntdir.ra_deg(), 'dec': pntdir.dec_deg()})

    # ... otherwise raise an exception since we have an unknown pattern
    else:
        msg = 'Observation pattern "%s" not recognized.' % (pattern)
        raise RuntimeError(msg)

    # Return observation definition list
    return obsdeflist


# ====================================================== #
# Set observation container filled with CTA observations #
# ====================================================== #
def set_observations(ra, dec, rad, tstart, duration, emin, emax, irf, caldb,
                     deadc=0.98, pattern='single', offset=1.5):
    """
    Set an observation container filled with CTA observations

    Parameters
    ----------
    ra : float
        Right Ascension of pattern centre (deg)
    dec : float
        Declination of pattern centre (deg)
    rad : float
        ROI radius used for analysis (deg)
    tstart : float
        Start time of observation (s)
    duration : float
        Duration of each observation (s)
    emin : float, optional
        Minimum event energy (TeV)
    emax : float, optional
        Maximum event energy (TeV)
    irf : str
        Instrument response function
    caldb : str
        Calibration database path
    deadc : float, optional
        Deadtime correction factor
    pattern : str, optional
        Observation pattern ("single", "four")
    offset : float, optional
        Offset from pattern centre (deg)

    Returns
    -------
    obs : `~gammalib.GObservations()
        Observation container
    """
    # Setup observation definition list
    obsdeflist = set_obs_patterns(pattern, offset=offset, ra=ra, dec=dec)

    # Create list of observations
    obs = set_obs_list(obsdeflist, tstart=tstart, duration=duration,
                       emin=emin, emax=emax, rad=rad, irf=irf, caldb=caldb,
                       deadc=deadc)

    # Return observation container
    return obs


# ==================== #
# Get stacked response #
# ==================== #
def get_stacked_response(obs, cntcube, edisp=False, addbounds=False,
                         log=False, debug=False, chatter=2):
    """
    Get stacked response cubes

    The number of energies bins are set to at least 30 bins per decade, unless
    the counts cube has more energy bins per decade.

    Parameters
    ----------
    obs : `~gammalib.GObservations`
        Observation container
    cntcube : `~gammalib.GCTAEventCube`
        Counts cube
    edisp : bool, optional
        Apply energy dispersion?
    addbounds : bool, optional
        Add boundaries at observation energies
    log : bool, optional
        Create log file(s)
    debug : bool, optional
        Create console dump?
    chatter : int, optional
        Chatter level

    Returns
    -------
    result : dict
        Dictionary of response cubes
    """
    # Derive binning parameters from counts cube
    xref     = cntcube.counts().projection().crval(0)
    yref     = cntcube.counts().projection().crval(1)
    binsz    = cntcube.counts().projection().cdelt(1)
    coordsys = cntcube.counts().projection().coordsys()
    proj     = cntcube.counts().projection().code()
    nxpix    = cntcube.nx()
    nypix    = cntcube.ny()
    emin     = cntcube.emin().TeV()
    emax     = cntcube.emax().TeV()
    ebins    = cntcube.ebins()

    # Translate coordinate system
    if coordsys == 'EQU':
        coordsys = 'CEL'

    # Set energy limits, with larger etrue limits for the case that energy
    # dispersion is requested
    if edisp:
        emin *= 0.5
        emax *= 1.5

    # Set number of energy bins to at least 30 per energy decade
    enumbins = int((math.log10(emax) - math.log10(emin)) * 30.0)
    if ebins > enumbins:
        enumbins = ebins

    # Compute spatial binning for point spread function and energy dispersion
    # cubes. The spatial binning is 10 times coarser than the spatial binning
    # of the exposure and background cubes. At least 2 spatial are required.
    psf_binsz = 10.0 * binsz
    psf_nxpix = max(nxpix // 10, 2)  # Make sure result is int
    psf_nypix = max(nypix // 10, 2)  # Make sure result is int

    # Create exposure cube
    expcube = ctools.ctexpcube(obs)
    expcube['incube']    = 'NONE'
    expcube['ebinalg']   = 'LOG'
    expcube['xref']      = xref
    expcube['yref']      = yref
    expcube['binsz']     = binsz
    expcube['nxpix']     = nxpix
    expcube['nypix']     = nypix
    expcube['enumbins']  = enumbins
    expcube['emin']      = emin
    expcube['emax']      = emax
    expcube['coordsys']  = coordsys
    expcube['proj']      = proj
    expcube['addbounds'] = addbounds
    expcube['debug']     = debug
    expcube['chatter']   = chatter
    if log:
        expcube.logFileOpen()
    expcube.run()

    # Create point spread function cube
    psfcube = ctools.ctpsfcube(obs)
    psfcube['incube']    = 'NONE'
    psfcube['ebinalg']   = 'LOG'
    psfcube['xref']      = xref
    psfcube['yref']      = yref
    psfcube['binsz']     = psf_binsz
    psfcube['nxpix']     = psf_nxpix
    psfcube['nypix']     = psf_nypix
    psfcube['enumbins']  = enumbins
    psfcube['emin']      = emin
    psfcube['emax']      = emax
    psfcube['coordsys']  = coordsys
    psfcube['proj']      = proj
    psfcube['addbounds'] = addbounds
    psfcube['debug']     = debug
    psfcube['chatter']   = chatter
    if log:
        psfcube.logFileOpen()
    psfcube.run()

    # Create background cube. Note that we use the same energy binning as
    # for the counts cube since no interpolation should be actually done
    # for the background cube.
    bkgcube = ctools.ctbkgcube(obs)
    bkgcube.cntcube(cntcube)
    bkgcube['debug']   = debug
    bkgcube['chatter'] = chatter
    if log:
        bkgcube.logFileOpen()
    bkgcube.run()

    # If energy dispersion is requested then create energy dispersion cube
    if edisp:
        edispcube = ctools.ctedispcube(obs)
        edispcube['incube']    = 'NONE'
        edispcube['ebinalg']   = 'LOG'
        edispcube['xref']      = xref
        edispcube['yref']      = yref
        edispcube['binsz']     = psf_binsz
        edispcube['nxpix']     = psf_nxpix
        edispcube['nypix']     = psf_nypix
        edispcube['enumbins']  = enumbins
        edispcube['emin']      = emin
        edispcube['emax']      = emax
        edispcube['coordsys']  = coordsys
        edispcube['proj']      = proj
        edispcube['addbounds'] = addbounds
        edispcube['debug']     = debug
        edispcube['chatter']   = chatter
        if log:
            edispcube.logFileOpen()
        edispcube.run()

    # Build response dictionary
    response = {}
    response['expcube'] = expcube.expcube().copy()
    response['psfcube'] = psfcube.psfcube().copy()
    response['bkgcube'] = bkgcube.bkgcube().copy()
    response['models']  = bkgcube.models().copy()
    if edisp:
        response['edispcube'] = edispcube.edispcube().copy()

    # Return response cubes
    return response


# ================================= #
# Get stacked observation container #
# ================================= #
def get_stacked_obs(cls, obs, nthreads=0):
    """
    Bin an observation and return an observation container with a single
    binned observation

    Parameters
    ----------
    cls : `~ctools.cscript`
        cscript class
    obs : `~gammalib.GObservations`
        Observation container
    nthreads : str, optional
        Number of parallel processes for On/Off spectra computation (0=all available CPUs)

    Returns
    -------
    obs : `~gammalib.GObservations`
        Observation container where the first observation is a binned observation
    """
    # Write header
    if cls._logExplicit():
        cls._log.header3('Binning events')

    # Bin events
    cntcube = ctools.ctbin(obs)
    cntcube['usepnt']   = False
    cntcube['ebinalg']  = 'LOG'
    cntcube['xref']     = cls['xref'].real()
    cntcube['yref']     = cls['yref'].real()
    cntcube['binsz']    = cls['binsz'].real()
    cntcube['nxpix']    = cls['nxpix'].integer()
    cntcube['nypix']    = cls['nypix'].integer()
    cntcube['enumbins'] = cls['enumbins'].integer()
    cntcube['emin']     = cls['emin'].real()
    cntcube['emax']     = cls['emax'].real()
    cntcube['coordsys'] = cls['coordsys'].string()
    cntcube['proj']     = cls['proj'].string()
    cntcube['nthreads'] = nthreads
    cntcube.run()

    # Store counts cube so that we can use it to build the background
    # cube
    cube = cntcube.cube()

    # Write header
    if cls._logExplicit():
        cls._log.header3('Creating stacked response')

    # Get stacked response
    response = get_stacked_response(obs, cube, edisp=cls['edisp'].boolean())

    # Retrieve a new oberservation container
    new_obs = cntcube.obs().copy()

    # Set stacked response
    if cls['edisp'].boolean():
        new_obs[0].response(response['expcube'], response['psfcube'],
                            response['edispcube'], response['bkgcube'])
    else:
        new_obs[0].response(response['expcube'], response['psfcube'],
                            response['bkgcube'])

    # Get new models
    models = response['models']

    # Set models for new oberservation container
    new_obs.models(models)

    # Return new oberservation container
    return new_obs


# ================================ #
# Get On/Off observation container #
# ================================ #
def get_onoff_obs(cls, obs, nthreads=0, ra = None, dec = None, srcname = ''):
    """
    Create On/Off observations container from given observations

    Parameters
    ----------
    cls : `~ctools.cscript`
        cscript class
    obs : `~gammalib.GObservations`
        Observation container
    nthreads : str, optional
        Number of parallel processes for On/Off spectra computation (0=all available CPUs)
    ra : float, optional
        R.A. of source region centre
    dec : float, optional
        Dec. of source region centre
    srcname : str, optional
        Source name

    Returns
    -------
    onoff_obs : `~gammalib.GObservations`
        Observation container with On/Off observations
    """
    # Write header
    if cls._logExplicit():
        cls._log.header3('Creating On/Off observations')

    # Initialise inmodel and use_model_bkg
    inmodel       = 'NONE'
    use_model_bkg = True

    # Set inmodel, srcname, and use_model_bkg if they are available
    if cls.has_par('inmodel') and obs.models().size() == 0:
        if cls['inmodel'].is_valid():
            inmodel = cls['inmodel'].value()
    if srcname == '' and cls.has_par('srcname'):
        srcname = cls['srcname'].value()
    if cls.has_par('use_model_bkg'):
        use_model_bkg = cls['use_model_bkg'].boolean()

    # Create On/Off observations
    phagen = cscripts.csphagen(obs)
    phagen['inmodel']     = inmodel
    phagen['srcname']     = srcname
    phagen['emin']        = cls['emin'].real()
    phagen['emax']        = cls['emax'].real()
    phagen['enumbins']    = cls['enumbins'].integer()
    phagen['ebinalg']     = 'LOG'
    phagen['srcshape']    = cls['srcshape'].string()
    # User has specified custom centre for the source region
    if ra != None and dec != None:
        phagen['coordsys'] = 'CEL'
        phagen['ra']       = ra
        phagen['dec']      = dec
    # Otherwise use default in class
    else:
        phagen['coordsys']    = cls['coordsys'].string()
        if cls['coordsys'].string() == 'CEL':
            phagen['ra']  = cls['xref'].real()
            phagen['dec'] = cls['yref'].real()
        elif cls['coordsys'].string() == 'GAL':
            phagen['glon'] = cls['xref'].real()
            phagen['glat'] = cls['yref'].real()
    if cls['srcshape'].string() == 'CIRCLE':
        phagen['rad'] = cls['rad'].real()
    elif cls['srcshape'].string() == 'RECT':
        phagen['width']  = cls['width'].real()
        phagen['height'] = cls['height'].real()
        phagen['posang'] = cls['posang'].real()
    phagen['bkgmethod'] = cls['bkgmethod'].string()
    if cls['bkgmethod'].string() == 'REFLECTED':
        phagen['bkgregmin'] = cls['bkgregmin'].integer()
    phagen['use_model_bkg'] = use_model_bkg
    phagen['maxoffset']     = cls['maxoffset'].real()
    phagen['stack']         = True
    phagen['etruemin']      = cls['etruemin'].real()
    phagen['etruemax']      = cls['etruemax'].real()
    phagen['etruebins']     = cls['etruebins'].integer()
    phagen['chatter']       = cls['chatter'].integer()
    phagen['clobber']       = cls['clobber'].boolean()
    phagen['debug']         = cls['debug'].boolean()
    phagen['nthreads']      = nthreads

    # Set exclusion map
    # Initialise exclusion map flag to False
    use_excl_map = False
    # Initialise inexclusion par flag to False
    use_inexclusion = False
    # Do we have valid exclusion map in memory?
    if hasattr(cls, 'exclusion_map'):
        exclusion_map = cls.exclusion_map()
        if exclusion_map is not None:
            # Set use exclusion map flag to True
            use_excl_map = True
            # Set exclusion map
            phagen.exclusion_map(exclusion_map)
    # If we do not have valid exclusion map in memory ...
    if not use_excl_map:
        # ... do we have an inxeclusion parameter?
        if cls.has_par('inexclusion'):
            # If the inexclusion parameter is valid
            if cls['inexclusion'].is_valid():
                # Set use inexclusion flag to True
                use_inexclusion = True
                # Set inexclusion parameter
                inexclusion = cls['inexclusion'].value()
                phagen['inexclusion'] = inexclusion
    # If there is no valid exclusion map in memory
    # nor valid inexclusion parameter
    if not use_excl_map and not use_inexclusion:
        # Set inexclusion for csphagen to None
        phagen['inexclusion'] = 'NONE'

    # Run csphagen
    phagen.run()

    # Clone resulting observation container
    onoff_obs = phagen.obs().copy()

    # On/Off observations are created with CSTAT as default statistic
    # We will change this to the user choice
    if cls['statistic'].string() != 'DEFAULT':
        for observation in onoff_obs:
            observation.statistic(cls['statistic'].string())

    # Return On/Off oberservation container
    return onoff_obs


# ========================================= #
# Calculate residuals from counts and model #
# ========================================= #
def residuals(cls, counts, model):
    """
    Calculate residuals given counts and models, according to algorithm
    specified by user.

    Can handle GSkyMap or GNdarray objects


    Parameters
    ----------
    cls : `~ctools.cscript`
        cscript class
    counts : `~gammalib.GSkyMap/~gammalib.GNdarray'
        Data counts
    model : `~gammalib.GSkyMap/~gammalib.GNdarray'
        Model counts

    Returns
    -------
    residuals : `~gammalib.GSkyMap/~gammalib.GNdarray'
        Residuals
    """
    # Find type of objects we are manipulating and set size to iterate later
    if counts.classname() == 'GNdarray':
        nelem = counts.size()
    elif counts.classname() == 'GSkyMap':
        nelem = counts.npix()
    else:
        msg = 'cscripts.obsutils.residuals only handles ' \
              + 'gammalib.GNdarray or gammalib.GSkyMap objects.\n'
        raise RuntimeError(msg)

    # Copy counts to initialise residuals
    residuals = counts.copy()

    # Get residual map algorithm type
    algorithm = cls['algorithm'].string()

    # Subtract
    if algorithm == 'SUB':
        residuals -= model

    # Subtract and divide by model
    elif algorithm == 'SUBDIV':
        residuals -= model
        residuals /= model

    # Subtract and divide by sqrt of model
    elif algorithm == 'SUBDIVSQRT':
        residuals -= model
        residuals /= model.sqrt()

    # Calculate significance from Li&Ma
    elif algorithm == 'SIGNIFICANCE':

        # Compute sign
        sign = (residuals - model).sign()

        # Loop over every bin
        for i in range(nelem):

            # If the model value > 0.0 do the computation as normal ...
            model_val = model[i]
            if model_val > 0.0:

                # If the data value is also > 0 then compute the
                # significance^2 and save it ...
                data_val = residuals[i]
                if data_val > 0.0:
                    log_val      = math.log(data_val / model_val)
                    residuals[i] = (data_val * log_val) + model_val - data_val
                    if residuals[i] < 0.0:   # See glitch issue #2765
                        residuals[i] = 0.0

                # ... otherwise compute the reduced value of the above
                # expression. This is necessary to avoid computing log(0).
                else:
                    residuals[i] = model_val

            # ... otherwise hard-code the significance to 0
            else:
                residuals[i] = 0.0

        # Compute significance map
        residuals *= 2.0
        residuals  = residuals.sqrt()
        residuals *= sign

    # Raise exception if algorithm is unknown
    else:
        raise TypeError('Algorithm "' + algorithm + '" not known')

    # Return
    return residuals


# ================= #
# Create counts map #
# ================= #
def create_counts_cube(cls, obs):
    """
    Create counts cube from observations

    Parameters
    ----------
    cls : `~ctools.cscript`
        cscript class
    obs : `~gammalib.GObservations`
        Observation container

    Returns
    -------
    cntcube : `~gammalib.GCTAEventCube`
        Counts cube
    """
    # Initialise ctbin
    ctbin = ctools.ctbin(obs)
    
    # Set parameters
    ctbin['xref']     = cls['xref'].real()
    ctbin['yref']     = cls['yref'].real()
    ctbin['proj']     = cls['proj'].string()
    ctbin['coordsys'] = cls['coordsys'].string()
    ctbin['ebinalg']  = cls['ebinalg'].string()
    ctbin['nxpix']    = cls['nxpix'].integer()
    ctbin['nypix']    = cls['nypix'].integer()
    ctbin['binsz']    = cls['binsz'].real()
    if cls['ebinalg'].string() == 'FILE':
        ctbin['ebinfile'] = cls['ebinfile'].filename().file()
    else:
        ctbin['enumbins'] = cls['enumbins'].integer()
        ctbin['emin']     = cls['emin'].real()
        ctbin['emax']     = cls['emax'].real()
        if cls['ebinalg'].string() == 'POW':
            ctbin['ebingamma'] = cls['ebingamma'].real()
    ctbin['chatter']  = cls['chatter'].integer()
    ctbin['clobber']  = cls['clobber'].boolean()
    ctbin['debug']    = cls['debug'].boolean()

    # Run ctbin
    ctbin.run()

    # Retrieve counts cube
    cntcube = ctbin.cube().copy()

    # Return counts cube
    return cntcube